TUM Logo Zentrum Logo
Schriftzug

Dr. Gianluca Orlando

Technische Universität München
Zentrum Mathematik - M7
Boltzmannstraße 3
85747 Garching

Room: 03.08.035
Phone: +49-89-289-17966
eMail: orlando@ma.tum.de



Since December 2020 I am working at Politecnico di Bari, Italy. My new webpage is available here.

Vita

  1. Dec 2020 - now: Fixed-term Assistant Professor (RTDA) in Math­e­mat­i­cal Anal­y­sis at the De­part­ment of Me­chan­ics, Math­e­mat­ics & Man­age­ment of Po­li­tec­ni­co di Ba­ri, Italy.
  2. Dec 2019 - Dec 2020: MSCA Fellow (host professor: Prof. Dr. M. Cicalese)
  3. Apr 2018 - Nov 2019: Humboldt Research Fellow (host professor: Prof. Dr. M. Cicalese)
  4. Oct 2017 - Mar 2018: Post-doc at TUM in project B08 of SFB Transregio 109
  5. Oct 2016 - Sep 2017: TUM University Foundation Fellowship (host professor: Prof. Dr. M. Cicalese)
  6. Oct 2013 - Sep 2016: PhD at SISSA - International School for Advanced Studies (advisors: Prof. G. Dal Maso and Prof. R. Toader)

Publications

  1. M. Cicalese, G. Orlando, M. Ruf. The N-clock model: Variational analysis for fast and slow divergence rates of N. Preprint (2020). [preprint]
  2. A. Bach, M. Cicalese, L. Kreutz, G. Orlando. The antiferromagnetic XY model on the triangular lattice: topological singularities. Preprint (2020). [preprint]
  3. M. Cicalese, G. Orlando, M. Ruf. Coarse graining and large-N behavior of the d-dimensional N-clock model. Preprint (2020). [preprint]
  4. A. Bach, M. Cicalese, L. Kreutz, G. Orlando. The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling. Preprint (2020). [preprint]
  5. V. Crismale, G. Orlando. A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ>1. Mathematics in Engineering 2 (2020), 101-118. [preprint]
  6. M. Cicalese, G. Orlando, M. Ruf. Emergence of concentration effects in the variational analysis of the N-clock model. Preprint (2020). [preprint]
  7. M. Cicalese, M. Forster, G. Orlando. Variational analysis of a two-dimensional frustrated spin system: emergence and rigidity of chirality transitions. SIAM J. Math. Anal. 51 (2019), 4848–4893. [preprint]
  8. R. Alessi, V. Crismale, G. Orlando. Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J. Nonlinear Sci. 29 (2019), 1041-1094. [preprint]
  9. V. Crismale, G. Orlando. A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n. NoDEA Nonlinear Differential Equations Appl. 25:16 (2018). [preprint]
  10. V. Crismale, G. Lazzaroni, G. Orlando. Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue. Math. Models Methods Appl. Sci. 28 (2018), 1371-1412. [preprint]
  11. G. Dal Maso, G. Orlando, R. Toader. Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv. Cal. Var. 10 (2016), 183-207. [preprint]
  12. G. Dal Maso, G. Orlando, R. Toader. Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case. Calc. Var. Partial Differential Equations 55:45 (2016). [preprint]
  13. G. Dal Maso, G. Orlando, R. Toader. Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length. NoDEA Nonlinear Differential Equations Appl. 22 (2015), 449-476. [preprint]

Acknowledgements

From December 2019 to December 2020 I received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 792583.

flag_yellow_low.jpg