TUM Logo Zentrum Logo
Schriftzug

Dr. Annika Bach

Technische Universität München
Zentrum Mathematik - M7
Boltzmannstraße 3
85747 Garching

Room: 03.08.035
Phone: +49-89-289-17966
eMail: annika.bach@ma.tum.de



Vita

  1. 2018 - now: Post-doc at TUM in project B08 of SFB Transregio 109 with Prof. Dr. Marco Cicalese
  2. 2015 - 2018: PhD student at University of Münster (advisor: Prof. Dr. Caterina Ida Zeppieri)

Research interests

  1. Calculus of Variations
  2. Discrete-to-continuum variational analysis
  3. Free-discontinuity problems

Publications

  1. A. Bach, M. Ruf. Fluctuation estimates for the multi-cell formula in stochastic homogenization of partitions. Preprint (2021). [preprint]
  2. A. Bach, R. Marziani, C. I. Zeppieri. Gamma-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals. Preprint (2021). [preprint]
  3. A. Bach, M. Cicalese, L. Kreutz, G. Orlando. The antiferromagnetic XY model on the triangular lattice: Toplogical singularities. Preprint (2020). [preprint]
  4. A. Bach, M. Cicalese, L. Kreutz, G. Orlando. The antiferromagnetic XY model on the triangular lattice: Chirality transitions at the surface scaling. Preprint (2020). [preprint]
  5. A. Bach, M. Cicalese, M. Ruf. Random finite-difference discretizations of the Ambrosio-Tortorelli functional at optimal mesh size. SIAM J. Math. Anal. , to appear (2019). [preprint]
  6. A. Bach, A. Braides, M. Cicalese. Discrete-to-continuum limits of multi-body systems with bulk and surface long-range interactions. SIAM J. Math. Anal. 52, no.4 (2020), 3600-3665. [preprint]
  7. A. Bach, A. Braides, C. I. Zeppieri. Quantitative analysis of finite-difference approximations of free-discontinuity problems. Interfaces Free Bound. 22, no. 3 (2020), 317-381. [preprint]
  8. A. Bach, L. Sommer. A Gamma-convergence result for fluid-filled fracture propagation. ESAIM Math. Model. Numer. Anal. 54, no. 3 (2020), 1003-1023. [preprint]
  9. A. Bach. Anisotropic free-discontinuity functionals as the Γ-limit of second-order elliptic functionals. ESAIM: Control Optim. Calc. Var., 24, no. 3 (2018), 1107–1140. [preprint]

Teaching

    SS2019 Fine Properties of Sobolev Functions.