
Proof of the Fourier reconstruction formula (48)

The central idea is to approximate f ∈ L1(Rn) by a convo-

lution with a nice function which sharply peaks at 0 and has

integral 1, and choose the nice function to be one whose Fourier

transform is explicitly known. (The first part of the idea, ap-

proximation by convolution with a sharply peaked function, is

familiar to us from the Proof of Lemma 1.2 3).) We choose

the nice function to be a normalized Gaussian with standard

deviation σ > 0,

Gσ(x) :=
1

(2πσ2)n/2
e−|x|2/2σ2 (54)

(this is convenient because of the simple behaviour of Gaus-

sians under Fourier transformation, cf. Example 2).

Step 1: Proof for Gaussians, f = Gσ. We calculate

Gσ(x) = (2π)−n̂̂Gσ(x) (by Example 2)

= (2π)−n

∫

Rn

e−ik·xĜσ(k) dk (by the def. of the F.T.)

= (2π)−n

∫

Rn

eik
′·xĜσ(k

′) dk′ (by the substitution k = −k′).

In the last line we have used that Ĝσ(k) = Ĝσ(−k), as is evi-

dent from the explicit formula in (53).

Step 2: Proof for convolutions of general functions with Gaus-

sians, f = Gǫ ∗ u with u ∈ L1, û ∈ L1, ǫ > 0. By Step 1 we

have for any x, y ∈ Rn

Gǫ(x− y) = (2π)−n

∫

Rn

eik·(x−y)Ĝǫ(k) dk.
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Multiplying by u(y) and integrating over y gives

(Gǫ ∗ u)(x) = (2π)−n

∫

Rn

(∫

Rn

eik·xe−ik·yĜǫ(k) u(y) dk

)
dy

= (2π)−n

∫

Rn

eik·x
∫

Rn

e−ik·yu(y) dy
︸ ︷︷ ︸

=û(k)

Ĝǫ(k) dk (by Fubini)(55)

= (2π)−n

∫

Rn

eik·xĜǫ ∗ u(k) dk (by Theorem 2.1 3)).

Step 3: Proof for general functions u with u ∈ L1, û ∈ L1.

We now let ǫ → 0 in (55). First we claim that the right hand

side converges to

(2π)−n

∫

Rd

eik·xû(k) dk. (56)

This follows because the integrand converges pointwise to that

of (56) (note that Ĝǫ(k) = e−ǫ2|k|2/2 → 1 as ǫ → 0) and

the convergence is dominated (since the absolute value of the

integrand is bounded from above by |û| ∈ L1(Rn)).

It remains to analyze the left hand side of (55). Intuitively,

Gǫ(x − y) peaks at y = x and has integral 1, so – just as in

our heuristic analysis of partial Fourier sums (4) in Section 1

– we expect
∫

Rn

Gǫ(x− y)u(y) dy ≈
∫

Rn

Gǫ(x− y) f(x) dy = u(x).

Rigorously: we claim that

(a) Gǫ ∗ u → u in L1(Rn) as ǫ → 0

(b) Gǫj ∗ u → u a.e. for some subsequence ǫj → 0.

Assertion (a) follows from a general measure-theoretic result

concerning mollification of L1 functions, and would continue
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to hold if Gǫ were replaced by any function of form φǫ(x) =

ǫ−nφ(ǫ−1x) with φ : Rn → R nonnegative, integrable, and∫
Rn φ = 1. See Lemma 4.1 a) in Appendix B. Assertion (b)

follows from another general measure-theoretic result, namely

that any sequence of functions which converges in L1(Rd) con-

tains a subsequence which converges almost everywhere (see

Lemma 4.3 in Appendix B). This completes the proof of the

Fourier representation formula (48).

2 Solving the heat equation

Fourier’s original motivation for initiating the branch of math-

ematics that is now called ‘Fourier analysis’ was to solve his

newly introduced partial differential equation model for prop-

agation of heat.

Armed with the calculus developed in Theorem 2.1, we are

now in a position to understand how Fourier achieved this

task.24

A basic version of Fourier’s model is the following:

(H) ∂u
∂t (x, t) = κ∆u(x, t) for all x ∈ R

n, t > 0

(IC) u(x, 0) = u0(x), for all x ∈ R
n

(BC) u(x, t) → g as |x| → ∞, for all t > 0.

Here u = u(x, t) is a function from Rn × [0,∞) to R, and

∆ =
∑n

j=1
∂2

∂x2j
. Physically, u(x, t) is the temperature at the

point x ∈ Rn at time t, the spatial region Rn idealizes a large

bounded region occupied by a conducting material, and the

coefficient κ reflects the conductivity of this material (it is

large for conductors and small for insulators).
24The overall strategy is not limited to any particular partial differential equation; applications

to other problems are described in Sections 6.4 and 6.5.
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Equation (H) is called the heat equation, and is one of the

fundamental linear partial differential equations of mathemat-

ics. It also arises as a basic model in various other contexts,

such as diffusion of reactants in chemical physics, Brownian

motion in stochastic analysis, or option pricing in financial

mathematics.

Fourier’s goal was to determine the (unknown) function u

from (assumed to be known) initial data u0 and boundary

data g.

Example of a counterintuitive prediction Fourier

made about heat At approximately 2 to 3 metres depth

below the earth’s surface, it is colder in summer than in winter.

As F. remarks, this suggests a good depth for the construction

of cellars.25 See Problem 4.

To understand the mathematical meaning of the heat equa-

tion, it is useful to look at the case of one space dimension,

n = 1, and to consider a point x which is a local spatial max-

imum of u. By the necessary condition for maxima, the sec-

ond derivative ∂2

∂x2
u(x, t) is negative (assuming the maximum

is nondegenerate, i.e. the second derivative does not vanish).

Eq. (H) says that at such a point, u decreases with time.

(This is in line with our intuition about temperature.) Analo-

gously, if x is a nondegenerate local spatial minimum of u, then
∂2

∂x2
u(x, t) > 0, and so eq. (H) makes u increase with time.

Moreover, the size of the second derivative (which reflects how

sharply u peaks at x) is by (H) proportional to the speed of

increase/decrease. Thus (H) says that sharp peaks are levelled

out quicker than mild peaks.26

25He was French – was he thinking of wine cellars (also called une cave)?
26You can test this experimentally at home: take two ice cubes of equal size, chop one of them

up into small pieces, and watch them melt in a glass of water!
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To solve (H), (IC), (BC), we assume without loss of gen-

erality g = 0 (otherwise consider the function u − g), and

we assume – as needs to be jusified later – that there exists

a smooth solution u which decays sufficiently rapidly to 0 as

|x| → ∞ so that u(·, t) ∈ L1(Rn) for all t. We introduce the

partial Fourier transform with respect to x,

(Fxu)(k, t) :=

∫

Rn

e−ix·ku(x, t) dx. (57)

Taking the partial Fourier transform with respect to x of (H)

and using the rule for the Fourier transform of a derivative

(∂̂f/∂xj)(k) = ikjf̂ (k), Theorem 2.1 7)) gives

∂

∂t
(Fxu)(k, t) = κ

n∑

j=1

(ikj)
2

︸ ︷︷ ︸
=−|k|2

(Fxu)(k, t). (58)

(Here we have assumed that u is sufficiently well behaved so

that Fxu is differentiable with respect to t and this differenti-

ation can be carried out underneath the integral sign in (57),

and that the rule for the Fourier transform of second spatial

derivatives is applicable.)

Key observation: The PDE for u has turned into an ODE

for Fxu.

More precisely, (58) is a system of decoupled ODE’s, one for
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each fixed k ∈ Rn. Each ODE is of the form ẏ(t) = αy(t),

which is easy to solve: y(t) = y(0)eαt. This together with the

initial condition (IC) gives

(Fxu)(k, t) = e−κ|k|2t(Fxu)(k, 0) = e−κ|k|2tû0(k). (59)

To find u, it remains to determine the inverse Fourier transform

of the right hand side. In light of the rule for the Fourier

transform of a convolution, it suffices to determine the inverse

Fourier transform of the multiplier e−κ|k|2t. This was already

carried out in Example 2; consequently

e−κ|k|2t = Ĝt(k) for Gt(x) :=
1√

4πκt
ne

− |x|2
4κt (t > 0).

Hence by the rule for the Fourier transform of a convolution

(Theorem 2.1 3))

(Fxu)(·, t) = Fx(Gt ∗ u0)
and thus, by the fact that two functions whose Fourier trans-

forms conincide must be identical (Theorem 2.1 (48))

u(x, t) =
1√

4πκt
n

∫

Rn

e−
|x−y|2
4κt u0(y) dy (x∈R

n, t>0) (60)

(Fourier, 1811).

Our derivation relied on assuming that there exists a smooth,

nicely behaved solution to the heat equation. So it only shows

that if such a solution exists, then it must be given by (60).

But we can easily rid ourselves of this premise, by checking a

posteriori that (60) indeed solves (H).27 This leads to

Theorem 2.2 (Solution to the heat equation) Let u0 ∈
L1(Rn). The function u : Rn× (0,∞) → C defined by (60)

27If you believe that the premise is sufficiently plausible not to require checking, you should skip
the following theorem and its proof.
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is once continuously differentiable in t and twice continu-

ously differentiable in x,28 and has the following properties:

a) u solves (H) in Rn × (0,∞)

b) u solves (BC) with g = 0

c) u(·, t) → u0 in L1(Rn) (t → 0).

Proof The main task is to prove the asserted differentiability

properties of u (which are needed for the derivatives appearing

in (H) to be well defined). These follow by justifying differ-

entiation underneath the integral sign in (60), via considering

the relevant difference quotients and passing to the limit with

the help of basic results about parameter-dependent integrals.

For completeness we include the details. We use the elemen-

tary fact that if a sequence gj of bounded functions converges

uniformly to g and u ∈ L1(Rn), then

|
∫

Rn

gju−
∫

Rn

g u| ≤ sup
y∈Rn

|gj(y)− g(y)| ||u||1 → 0. (61)

Fix x ∈ Rn, t > 0, and write u(x, t) as
∫
Rn Gt(x−y)u0(y) dy.

As h → 0, the difference quotient 1
h(Gt+h(x− y)−Gt(x− y))

converges uniformly with respect to y to ∂
∂tGt(x − y), so by

(61)

u(x, t + h)− u(x, t)

h
=

∫

Rn

Gt+h(x− y)−Gt(x− y)

h
u0(y) dy

→
∫

Rn

∂

∂t
Gt(x− y)u0(y) dy,

i.e. u is differentiable with respect to t, with derivative given

by
∂u

∂t
(x, t) =

∫

Rn

∂

∂t
Gt(x− y)u0(y) dy. (62)

28For more about differentiability of u see Corollary 5.2.
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Analogously, by uniform convergence of the spatial difference

quotients

Gt(x+hej−y)−Gt(x−y)

h
and

∂
∂xj

Gt(x+hek−y)− ∂
∂xj

Gt(x−y)

h

(where ej denote the unit vector in Rn with jth component

equal to 1 and the remaining components equal to zero), u is

once respectively twice differentiable with respect to x, with

partial derivatives given by

∂u

∂xj
(x, t) =

∫

Rn

∂

∂xj
Gt(x− y)u0(y) dy,

∂2u

∂xj∂xk
(x, t) =

∫

Rn

∂2

∂xj∂xk
Gt(x− y)u0(y) dy. (63)

Finally, continuity of the above partial derivatives of u follows

by noting that if (x(ν), t(ν)) converges to (x, t), then the corre-

sponding prefactors of u0(y) in the above intergrals converge

uniformly in y, and applying (61).

(a) now follows from (62), (63), and the fact (easily checked

from the definition of Gt by explicit computation) that

∂

∂t
Gt(x−y) =

(
− n

2t
+

|x− y|2
4κt2

)
Gt(x−y) = κ∆xGt(x−y).

(b) follows since as |x| → ∞, the integrand in (60) tends

pointwise to zero, and the convergence is dominated since the

integrand is bounded in absolute value by |u0(y)| ∈ L1(Rn).

Finally, (c) is a consequence of Lemma 4.1 (a) in Appendix

C. The proof of Theorem 2.2 is complete.

Let us now interpret the solution formula (60). The function

Gt appearing in the formula is a Gaussian of standard deviation

∼
√
t.
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Thus the solution at point x emerges from taking a “weighted

average” of the initial data over a region around x of diameter

∼
√
t. In particular, for small t, only a small neighbourhood of

x is relevant, but for large t, the average has to be taken over

a larger and larger region, “wiping out” the detailed structure

of the initial data below the averaging lengthscale.

On physical grounds one would expect the above solution to

be unique. The natural setting for formulating and proving

this uniqueness mathematically (that of Sobolev spaces) lies

beyond the scope of this short section. See e.g. [Ev].

We single out one basic consequence of the solution formula:

Corollary 2.1 (Long time behaviour) Let u(·, 0) ∈ L1(Rn).

Let u(x, t) be the solution to the heat equation given by

(60). Then

sup
x∈Rn

|u(x, t)| ≤ Ct−n/2||u(·, 0)||1, C = (4πκ)−n/2

for all t > 0. In particular, supx∈Rn |u(x, t)| → 0 as t →
∞.

Physical interpretation: at long time, the temperature of a

conducting body approaches the temperature prescribed at its

boundary.29

29In the light of this finding, let us revisit the modelling assumption of a constant boundary
condition made in (BC). It may be paraphrased, physically, as assuming a surrounding “infinite
reservoir” whose behaviour is only negligibly affected by the conductor. Think of warm summer
air, surrounding your favourite cold drink.
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