TUM Logo Zentrum Logo
Schriftzug
P1000020.JPG

Dr.rer.nat.habil. Heinz-Jürgen Flad

Technische Universität München
Zentrum Mathematik - M7
Boltzmannstraße 3
85747 Garching

Raum: 03.08.036
Tel.: +49-89-289-17915
eMail: fladma.tum.de

Verheiratet mit Gohar Harutyunyan; Zwei Kinder: Manuel-Narek und Mariam (geb. 18.05.2012)

Research Interests

  • Applications of singular analysis to quantum many-particle models in chemistry
  • Density Functional Theory
  • Numerical Analysis
  • Physics of metal clusters and quasi two dimensional metalic films
  • Quantum Monte-Carlo
  • Quantum Chemistry Applications

Theses

  • Multi-Scale and Tensor Product Approximation in Electronic Structure Calculations, Habilitation (cumulative), Institut für Mathematik, TU Berlin, April 2014
  • Monte-Carlo-Methoden: Effektiver Einbau von Pseudopotentialen und neue Ansätze für Jastrow-Faktoren, Dissertation, Institut für Theoretische Chemie, Universität Stuttgart, Dezember 1993

Publications

Applications of singular analysis to quantum many-particle models in chemistry
  • H.-J. Flad, G. Flad-Harutyunyan, Singular Analysis of RPA diagrams in coupled Cluster theory (submitted)
  • H.-J. Flad, G. Flad-Harutyunyan, B.-W. Schulze, Ellipticity of the quantum mechanical Hamiltonians: Corner Singularity of the helium atom (submitted)
  • H.-J. Flad, G. Flad-Harutyunyan, and B.-W. Schulze, Explicit Green operators for quantum mechanical Hamiltonians. II. Edge type singularities of the helium atom (submitted)
  • H.-J. Flad, G. Harutyunyan, and B.-W. Schulze, Asymptotic Parametrices of Elliptic Edge Operators. Journal of Pseudo-Differential Operators and Applications, Vol. 7, Issue 3 (2016), 321-363
  • H.-J. Flad, Gohar Harutyunyan, and Bert-Wolfgang Schulze, Singular analysis and coupled cluster theory. Phys. Chem. Chem. Phys., Vol. 17 (2015), 31530-31541
  • H.-J. Flad and G. Harutyunyan, Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Discrete and continuous dynamical systems, Supplement 2011, 420-429
  • H.-J. Flad, G. Harutyunyan, R. Schneider and B.-W. Schulze, Explicit Green operators for quantum mechanical Hamiltonians. I. The hydrogen atom. Manuscripta Math. 135, 2011, 497-519
  • H.-J. Flad, R. Schneider and B.-W. Schulze, Asymptotic regularity of solutions of Hartree-Fock equations with Coulomb potential. Math. Methods Appl. Sci. 31, 2008, 2172-2201

Density Functional Theory

  • A. Savin and H.-J. Flad, Density-functionals for the Yukawa electron-electron interaction. Int. J. Quantum Chem. 56, 1995, 327

Numerical Analysis

  • H.-J. Flad and R. Schneider, s*-compressibility of discrete Hartree-Fock equations. ESAIM: M2AN, 46, 2012, 1055-1080
  • B.N. Khoromskij, V. Khoromskaia and H.-J. Flad, Numerical solution of the Hartree-Fock equation in multilevel tensor-structured Format. SIAM J. Sci. Comput. 33, 2011, 45-65
  • S.R. Chinnamsetty, W. Hackbusch and H.-J. Flad, Efficient multi-scale computation of products of orbitals in electronic structure calculations. Comput. Visual. Sci. 13, 2010, 397-408
  • H.-J. Flad, W. Hackbusch, B.N. Khoromskij and R. Schneider, Concepts of Data-Sparse Tensor-Product Approximation in Many-Particle Modeling. In: Matrix Methods: Theory, Algorithms and Applications (dedicated to the Memory of Gene Golub) V. Olshevsky, E. Tyrtyshnikov eds., World Scientific, 2010, 313-347
  • H.-J. Flad, T. Rohwedder and R. Schneider, Adaptive methods in quantum chemistry. Z. Phys. Chem. 224, 2010, 651-669
  • S.R. Chinnamsetty, M. Espig, H.-J. Flad and W. Hackbusch, Canonical tensor products as a generalization of Gaussian-type orbitals. Z. Phys. Chem. 224, 2010, 681-694
  • B.N. Khoromskij, V. Khoromskaia, S.~R. Chinnamsetty, and H.-J. Flad, Tensor decomposition in electronic structure calculations on 3D Cartesian grids. J. Comput. Phys. 228, 2009, 5749-5762
  • H.-J. Flad, B. N. Khoromskij, D.V. Savostyanov and E.E. Tyrtyshnikov, Verification of the Cross 3d Algorithm on Quantum Chemistry Data. Russian J. Numer. Anal. Math. Modelling 23, 2008, 329-344
  • S.R. Chinnamsetty, M. Espig, W. Hackbusch, B.N. Khoromskij and H.-J. Flad, Tensor product approximation with optimal rank in quantum chemistry. J. Chem. Phys. 084110 (2007), 14 pages
  • H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations.II. Jastrow factors. ESAIM: M2AN 41, 2007, 261-279
  • M.V. Fedorov, H.-J. Flad, L. Grasedyck, and B.N. Khoromskij, Low-rank wavelet solver for the Ornstein-Zernike integral equation. Computing 80, 2007, 47-73 * H.-J. Flad, W. Hackbusch, H. Luo and D. Kolb, Wavelet based multiscale methods for electronic structure calculations. In Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke Ed., Springer, Berlin 2006, 299-330.
  • H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations.I. One-electron reduced density Matrix. ESAIM: M2AN 40, 2006, 49-61
  • H.-J. Flad, W. Hackbusch, H. Luo and D. Kolb, Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B 71, 2005, 125115, 18 p.
  • H.-J. Flad, W. Hackbusch, H. Luo and D. Kolb, Wavelet Approach to quasi two-dimensional extended many-particle systems. I. Supercell Hartree-Fock method. J. Comp. Phys. 205, 2005, 540-566
  • J. Toulouse, A. Savin and H.-J. Flad, Short-range exchange-correlation energy functionals from a uniform electron gas with modified electron-electron interaction. Int. J. Quantum Chem. 100, 2004, 1047-1056
  • H. Luo, D. Kolb, H.-J. Flad, W. Hackbusch and T. Koprucki, Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and Adaptive approximation schemes. J. Chem. Phys. 117, 2002, 3625-3638
  • H.-J. Flad, W. Hackbusch, D. Kolb and R. Schneider, Wavelet approximation of correlated wavefunctions. I. Basics. J. Chem. Phys. 116, 2002, 9641-9657

Physics of metal clusters and quasi two dimensional metalic films

  • H. Luo, C.M. Horowitz, H.-J. Flad and C. Proetto, Direct comparison of optimized effective potential and Hartree-Fock self-consistent calculations for jellium slabs. Phys. Rev. B, 85, 165133 (2012), 6 pages
  • H. Luo, W. Hackbusch, H.-J. Flad, and D. Kolb, Fully self-consistent Hartree-Fock calculation of jellium slabs: Exact treatment of exchange Operator. Phys. Rev. B. 78, 035136 (2008), 12 pages
  • H.-J. Flad, F. Schautz, Y. Wang and M. Dolg, Quantum Monte Carlo Study of Mercury Clusters. In Recent Advances in Quantum Monte Carlo Methods Part II ed W.A. Lester Jr., S.M. Rothstein and S. Tanaka (World Scientific Publishing, Singapore, 2002), 183-202
  • B. Hartke, H.-J. Flad and M. Dolg, Structures of mercury clusters in a quantum-empirical hybrid model. Phys. Chem. Chem. Phys. 3, 2001, 5121-5129
  • Y. Wang, H.-J. Flad and M. Dolg, Ab initio study of structure and bonding of strontium Cluster. J. Phys. Chem. A 104, 2000, 5558-5567
  • Y. Wang, H.-J. Flad and M. Dolg, Structural changes induced by an excess electron in small mercury Clusters. Int. J. Mass. Spectrom. 201, 2000, 197-204
  • Y. Wang, H.-J. Flad and M. Dolg, Realistic hybrid model for correlation effects in mercury Clusters. Phys. Rev. B 61, 2000, 2362-2370
  • Y. Wang, F. Schautz, H.-J. Flad and M. Dolg, On the importance of 5d orbitals for covalent bonding in ytterbium Clusters. J. Phys. Chem. A 103, 1999, 5091-5098
  • H.-J. Flad, F. Schautz, Y. Wang, M. Dolg and A. Savin, On the bonding of small group 12 Clusters. Eur. Phys. J. D 6, 1999, 243-254
  • M. Dolg and H.-J. Flad, Size dependent properties of Hgn Clusters. Mol. Phys. 91, 1997, 815

Quantum Monte-Carlo

  • S.R. Chinnamsetty, H. Luo, W. Hackbusch, H.-J. Flad and A. Uschmajew, Bridging the gap between quantum Monte Carlo and F12-methods. Phys. Chem., 2011, published online
  • H. Luo, W. Hackbusch and H.-J. Flad, Qunatum Monte Carlo study of the transcorrelated method for correlation factors. Mol. Phys. 108, 2010, 425-431
  • H. Luo, W. Hackbusch and H.-J. Flad, Quantum Monte Carlo study of Jastrow perturbation theory. I. Wavefunction optimization. J. Chem. Phys. 131, 104106 (2009), 13 pages
  • H. Luo, D. Kolb, H.-J. Flad, and W. Hackbusch, Perturbative calculation of Jastrow factors: Accurate description of short-range correlations. Phys. Rev. B 75, 125111 (2007), 10 pages
  • C. Müller, H.-J. Flad, M. Kohout and J. Reinhold, Quantum Monte Carlo calculation of correlation effects on bond orders. Theor Chem Acc 117, 2007, 41-48
  • F. Schautz and H.-J. Flad, Selective correlation scheme within diffusion quantum Monte Carlo. J. Chem. Phys. 116, 2002, 7398-7408
  • F. Schautz and H.-J. Flad, Quantum Monte Carlo study of the dipole moment of CO. J. Chem. Phys. 110, 1999, 11700-11707
  • F. Schautz, H.-J. Flad and M. Dolg, Quantum Monte Carlo study of Be2 and group 12 dimers M2 (M=Zn, Cd, Hg). Theor Chem Acc 99, 1998, 231
  • H.-J. Flad and M. Dolg, Probing the accuracy of pseudopotentials for transition metals in quantum Monte Carlo Calculations. J. Chem. Phys. 107, 1997, 7951
  • H.-J. Flad, M. Dolg and A. Shukla, Spin-orbit coupling in variational quantum Monte Carlo calculations. Phys. Rev. A 55, 1997, 4183
  • H.-J. Flad, M. Caffarel and A. Savin, Quantum Monte Carlo calculations with multi-reference trial wave functions. In Recent Advances in Quantum Monte Carlo Methods ed. W. A. Lester Jr., (World Scientific Publishing, Singapore 1997), 73
  • H.-J. Flad and M. Dolg, Ground state properties of Hg2. II. A quantum Monte Carlo study. J. Phys. Chem. 100, 1996, 6152
  • H.-J. Flad and A. Savin, A new Jastrow factor for atoms and molecules, using two-electron systems as a guiding principle. J. Chem. Phys. 103, 1995, 691
  • H.-J. Flad and A. Savin, Transfer of electron correlation from the electron gas to inhomogeneous systems via Jastrow factors. Phys. Rev. A. 50, 1994, 3742
  • H.-J. Flad, A. Savin, M. Schultheiss, A. Nicklass and H. Preuss, A systematic study on the fixed-node and localization error in quantum Monte Carlo calculations with pseudopotentials for group III elements. Chem. Phys. Lett. 222, 1994, 274
  • H.-J. Flad, A. Savin and H. Preuss, Reduction of the computational effort in quantum Monte Carlo calculations with pseudopotentials through a change of the projection Operators. Chem. Phys. 97, 1992, 459

Quantum Chemistry Applications

  • S. Kalvoda, M. Dolg, H.-J. Flad and P. Fulde, Ab initio approach to cohesive properties of GdN. Phys. Rev. B 57, 1998, 2127
  • T. Leininger, A. Berning, A. Nicklass, H. Stoll, H.-J. Werner and H.-J. Flad, Spin-orbit interaction in heavy group 13 atoms and TlAr. Chem. Phys. 217, 1997, 19
  • A. Shukla, M. Dolg, H.-J. Flad, A. Banerjee, A.K. Mohanty, Relativistic configuration-interaction study of valence-electron correlation effects on the fine-structure splitting in the Pb isoelectronic series. Phys. Rev. A 55, 1997, 3433
  • H. Binder, B. Riegel, G. Heckmann, M. Moscherosch, W. Kaim, H.-G. von Schnering, H.-J Flad and A. Savin, Generation and characterization of diphospene and triphosphene radical anions. Computational studies on the structure and stability of P3 H3-. Inorg. Chem. 35, 1996, 2119
  • M. Dong and H.-J. Flad, Ground state properties of Hg2. I. A pseudopotential configuration interaction study. J. Phys. Chem. 100, 1996, 6147
  • H. Binder, I. Duttlinger, H. Loos, K. Locke, A. Pfitzner, H.-J. Flad, A. Savin and M. Kohout, Darstellung und schwingungsspektroskopische Untersuchung von [H3B-Se-Se-BH3]2- und [H3B-Se(B2H5)]- Kristallstruktur und theoretische Untersuchung der Molekülstruktur von M[H3B-Se(B2H5)]. Z. anorg.allg. Chem. 621, 1995, 400
  • H. Binder, H. Loos, H. Borrmann, A. Simon, H.-J. Flad and A. Savin, [Na*Triglyme]2[S(BH3)4]: a new thiohydridoborate anion. Crystal structure-theoretical investigations of the structure. Z. anorg. allg. Chem. 619, 1993, 1353
  • M. Dolg, H. Stoll, H.-J. Flad and H. Preuss, Ab initio pseudopotential study of Yb and YbO. J. Chem. Phys. 97, 1992, 1162
  • A. Savin, H.-J. Flad, J. Flad, H. Preuss and H. G. von Schnering, On the bonding in carbosilane. Angew. Chem. Int. Ed. Engl. 31, 1992, 185
  • G. Igel-Mann, H.-J. Flad, C. Feller and H. Preuss, Pseudopotential investigations on indium, tin and antimony compounds. J. Molec. Struct. (Theochem) 209, 1990, 313
  • G. Igel-Mann, C. Feller, H.-J. Flad , A. Savin and H. Preuss, Comparative study of spectroscopic properties of some indium, tin and antimony compounds. Mol. Phys. 68, 1989, 209

Teaching