TUM Logo Zentrum Logo

Abstract Harmonic Analysis [MA5065] - SS 16

News     Timetable     Course Material     People

Abstract harmonic analysis builds on the theory of topological groups that combines the local concept of 'nearness' (given by a topology) with the global concept of 'homomgeneity' (given by a group law). The interplay between these two structures results in a rich theory that finds applications in

This course covers the basic results and techniques of the following topics:

The theory will be accompanied by illustrating examples, and exercises.

(This course is an adaption of last year's course Analysis on Groups.)


back to top


back to top

Lecture 1   Wednesday,    16:15 - 17:45,   MI 02.10.011  
Lecture 2   Friday,    10:15 - 11:45,   MI 03.08.022  

Exercises   Friday,    12:15 - 13:45   MI 03.08.022  

Exam (25 minutes, oral)  
04.08.2016   10:00 - 11:00    

Repeat Exam  
tba   tba   tba  

Course Material

back to top

Week 1 (25.04. - 29.04.)
Lecture 1: Introduction; background: general topology Lecture 1
Lecture 2: background: uniform spaces; topological groups Lecture 2
Exercises: Some groups; uniform structure of topological groups; Banach spaces; countable groups Sheet 1   Solution

Week 2 (02.05. - 06.05.)
Lecture 3: topological and uniform structure of lcH groups Lecture 3
Lecture 4: topological subgroups and quotients Lecture 4
Exercises: Semidirect product groups; the field of p-adic numbers Sheet 2   Solution

Week 3 (09.05. - 13.05.)
Lecture 5: proper group actions and homogeneous spaces Lecture 5
Lecture 6: functions and measures on locally compact Hausdorff spaces Lecture 6
Exercises: conjugation; point measures on groups Sheet 3   Solution

Week 4 (16.05. - 20.05.)
Lecture 7: the Haar measure of an lcH group Lecture 7
Lecture 8: the Haar measure of an lcH group (ctd.); finiteness properties of the Haar measure Lecture 8
Exercises: some Haar measures; the Haar measure of the shearlet group Sheet 4   Solution

Week 5 (23.05. - 27.05.)
Lecture 9: the modular function; orbital mean operators Lecture 9
Lecture 10: the Weil formula for strongly proper G-spaces Lecture 10
Exercises: modulus of an automorphism; the Haar measure of a semidirect product; the Haar measures of SO(3) and SE(3) Sheet 5   Solution

Week 6 (30.05. - 03.06.)
Lecture 11: proof of the Weil formula; examples Lecture 11
Lecture 12: integration on fundamental domains; the algebras L^1(G) and M(G) Lecture 12
Exercises: A Weil formula for the `ax+b'-group; invariance properties of measures on quotients Sheet 6   Solution

Week 7 (06.06. - 10.06.)
Lecture 13: dual group of an lca group; Fourier transform on L^1(G); Riemann-Lebesgue lemma Lecture 13
Lecture 14: Translation/modulation duality; convolution theorem; F^1(G_hat) is dense in C_0(G_hat) Lecture 14
Exercises: Translation/modulation duality; convolution theorem; the discrete Fourier transform; Heisenberg group and phase space Sheet 7   Solution

Week 8 (13.06. - 17.06.)
Lecture 15: the Fourier transform on L^1(\Q); the ring of adeles Lecture 15
Lecture 16: the Fourier transform on M(G); inverse Fourier transform; positive definite functions Lecture 16
Exercises: the Fourier transform on \R_+, the Mellin transform, and the Riemann zeta function Sheet 8   Solution

Week 9 (20.06. - 24.06.)
Lecture 17: properties of positive definite functions; irreducible unitary representations Lecture 17
Lecture 18: Gelfand-Naimark-Segal construction Lecture 18
Exercises: unitary represenations Sheet 9   Solution

Week 10 (27.06. - 01.07.)
Lecture 19: Bochner's theorem Lecture 19
Lecture 20: Fourier inversion on B(G); Gelfand-Raikov for lca groups Lecture 20
Exercises: discrete and compact groups; Fourier transform of a product; FT on \R and differentiation Sheet 10   Solution

Week 11 (04.07. - 08.07.)
Lecture 21: Pontryagin duality; Fourier inversion on L^1(G); Plancherel's theorem Lecture 21
Lecture 22: the reciprocal group; the Poisson summation formula Lecture 22
Exercises: Shannon sampling on lca groups Sheet 11   Solution

Week 12 (11.07. - 15.07.)
Lecture 23: The Zak transform for lca groups Lecture 23
Lecture 24: The voice transform for affine representations; the continuous wavelet transform Lecture 24
Exercises: no exercises  


back to top

Harmonic Analysis
Jüstel   Abstract Harmonic Analysis    lecture notes    2016       
Folland   A Course in Abstract Harmonic Analysis    CRC Press    1995       
Reiter, Stegeman   Classical Harmonic Analysis and Locally Compact Groups    Oxford University Press    2000       
Hewitt, Ross   Abstract Harmonic Analysis (Volume I and II)    Springer    1963, 1970       

Kelley   General Topology    Van Nostrand    1955       
Bourbaki   General Topology    Springer    1989       


back to top

  NameSorted ascending eMail Room Consultation
Lecturer   Dominik Jüstel  juestelma.tum.de   MI 03.06.021   tba